We present a habitat suitability index (HSI) model for black bears (Ursus americanus) living in the southern Appalachians that was developed a priori from the literature, then tested using location and home range data collected in the Pisgah Bear Sanctuary, North Carolina, over a 12-year period. The HSI was developed and initially tested using habitat and bear data collected over 2 years in the sanctuary. We increased number of habitat sampling sites, included data collected in areas affected by timber harvest, used more recent Geographic Information System (GIS) technology to create a more accurate depiction of the HSI for the sanctuary, evaluated effects of input variability on HSI values, and duplicated the original tests using more data. We found that the HSI predicted habitat selection by bears on population and individual levels and the distribution of collared bears were positively correlated with HSI values. We found a stronger relationship between habitat selection by bears and a second-generation HSI. We evaluated our model with criteria suggested by Roloff and Kernohan (1999) for evaluating HSI model reliability and concluded that our model was reliable and robust. The model's strength is that it was developed as an a priori hypothesis directly modeling the relationship between critical resources and fitness of bears and tested with independent data. We present the HSI spatially as a continuous fitness surface where potential contribution of habitat to the fitness of a bear is depicted at each point in space.