Responses of coastal wetlands to rising sea level

Ecology
By: , and 

Links

Abstract

Salt marsh ecosystems are maintained by the dominant macrophytes that regulate the elevation of their habitat within a narrow portion of the intertidal zone by accumulating organic matter and trapping inorganic sediment. The long-term stability of these ecosystems is explained by interactions among sea level, land elevation, primary production, and sediment accretion that regulate the elevation of the sediment surface toward an equilibrium with mean sea level. We show here in a salt marsh that this equilibrium is adjusted upward by increased production of the salt marsh macrophyte Spartina alterniflora and downward by an increasing rate of relative sea-level rise (RSLR). Adjustments in marsh surface elevation are slow in comparison to interannual anomalies and long-period cycles of sea level, and this lag in sediment elevation results in significant variation in annual primary productivity. We describe a theoretical model that predicts that the system will be stable against changes in relative mean sea level when surface elevation is greater than what is optimal for primary production. When surface elevation is less than optimal, the system will be unstable. The model predicts that there is an optimal rate of RSLR at which the equilibrium elevation and depth of tidal flooding will be optimal for plant growth. However, the optimal rate of RSLR also represents an upper limit because at higher rates of RSLR the plant community cannot sustain an elevation that is within its range of tolerance. For estuaries with high sediment loading, such as those on the southeast coast of the United States, the limiting rate of RSLR was predicted to be at most 1.2 cm/yr, which is 3.5 times greater than the current, long-term rate of RSLR.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Responses of coastal wetlands to rising sea level
Series title Ecology
DOI 10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2
Volume 83
Issue 10
Year Published 2002
Language English
Publisher Wiley
Contributing office(s) Wetland and Aquatic Research Center
Description 9 p.
First page 2869
Last page 2877
Country United States
State South Carolina
Other Geospatial Goat Island
Google Analytic Metrics Metrics page
Additional publication details