We compare two methods of seismic-intensity estimation from ground-motion records for the two recent strong earthquakes: the 1999 (M 7.1) Hector Mine, California, and the 1999 (M 7.6) Chi-Chi, Taiwan. The first technique utilizes the peak ground acceleration (PGA) and velocity (PGV), and it is used for rapid generation of the instrumental intensity map in California. The other method is based on the revised relationships between intensity and Fourier amplitude spectrum (FAS). The results of using the methods are compared with independently observed data and between the estimations from the records. For the case of the Hector Mine earthquake, the calculated intensities in general agree with the observed values. For the case of the Chi-Chi earthquake, the areas of maximum calculated intensity correspond to the areas of the greatest damage and highest number of fatalities. However, the FAS method producees higher-intensity values than those of the peak amplitude method. The specific features of ground-motion excitation during the large, shallow, thrust earthquake may be considered a reason for the discrepancy. The use of PGA and PGV is simple; however, the use of FAS provides a natural consideration of site amplification by means of generalized or site-specific spectral ratios. Because the calculation of seismic-intensity maps requires rapid processing of data from a large network, it is very practical to generate a "first-order" map from the recorded peak motions. Then, a "second-order" map may be compiled using an amplitude-spectra method on the basis of available records and numerical modeling of the site-dependent spectra for the regions of sparse station spacing.