High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within Yellowstone Lake, which is mostly within the Yellowstone caldera, aeromagnetic lows also are associated with known hydrothermal activity in the lake. Many of the magnetic lows extend beyond the areas of alteration and hot springs, suggesting a more extensive currently active or fossil hydrothermal system than is currently mapped. Steep magnetic gradients, suggesting faults or fractures, bound the magnetic lows. This implies that fractures localize the hot springs. Magnetic gradient trends reflect the mapped Basin and Range structural trends of north and northwest, as well as northeasterly trends that parallel the regional trend of the Snake River Plain and the track of the Yellowstone hot spot which follow the Precambrian structural grain. These trends are found both at small scales such as in hydrothermal basins and at more regional fault scales, which suggests that the regional stress field and reactivated older structures may exert some control on localization of hydrothermal activity. ?? 2002 Elsevier Science B.V. All rights reserved.