Calcite and silica form coatings on fracture footwalls and cavity floors in the welded tuffs at Yucca Mountain, the potential site of a high-level radioactive waste repository. These secondary mineral deposits are heterogeneously distributed in the unsaturated zone (UZ) with fewer than 10% of possible depositional sites mineralized. The paragenetic sequence, compiled from deposits throughout the UZ, consists of an early-stage assemblage of calcite??fluorite??zeolites that is frequently capped by chalcedony??quartz. Intermediate- and late-stage deposits consist largely of calcite, commonly with opal on buried growth layers or outermost crystal faces of the calcite. Coatings on steep-dipping fractures usually are thin (??? 3 mm) with low-relief outer surfaces whereas shallow-dipping fractures and lithophysal cavities typically contain thicker, more coarsely crystalline deposits characterized by unusual thin, tabular calcite blades up to several cms in length. These blades may be capped with knobby or corniced overgrowths of late-stage calcite intergrown with opal. The observed textures in the fracture and cavity deposits are consistent with deposition from films of water fingering down fracture footwalls or drawn up faces of growing crystals by surface tension and evaporated at the crystal tips. Fluid inclusion studies have shown that most early-stage and some intermediate-stage calcite formed at temperatures of 35 to 85??C. Calcite deposition during the past several million years appears to have been at temperatures < 30??C. The elevated temperatures indicated by the fluid inclusions are consistent with temperatures estimated from calcite ??18O values. Although others have interpreted the elevated temperatures as evidence of hydrothermal activity and flooding of the tuffs of the potential repository, the authors conclude that the temperatures and fluid-inclusion assemblages are consistent with deposition in a UZ environment that experienced prolonged heat input from gradual cooling of nearby plutons. The physical restriction of the deposits (and, therefore, fluid flow) to fracture footwalls and cavity floors and the heterogeneous and limited distribution of the deposits provides compelling evidence that they do not reflect flooding of the thick UZ at Yucca Mountain. The textures and isotopic and chemical compositions of these mineral deposits are consistent with deposition in a UZ setting from meteoric waters percolating downward along fracture flow paths.