thumbnail

Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

Economic Geology
By: , and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (<6 wt % NaCl equiv), acidic, and H2S rich. Gold-rich pyrite formed by dissolution of dolomite and sulfidation of its contained Fe. Where dissolution and replacement were complete, ore-stage pyrite and other insoluble minerals were all that remained. Locally, these minerals accumulated as internal sediments in dissolution cavities to form ore with gold grades >400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.
Publication type Article
Publication Subtype Journal Article
Title Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada
Series title Economic Geology
Volume 98
Issue 6
Year Published 2003
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Economic Geology
First page 1069
Last page 1100
Google Analytic Metrics Metrics page
Additional publication details