thumbnail

Extension of EMA to address regional skew and low outliers

By: , and 
Edited by: P. Bizier and P. DeBarry

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

The recently developed expected moments algorithm [EMA] (Cohn et al. 1997) does as well as MLEs at estimating LP3 flood quantiles using systematic and historical information. Needed extensions include use of a regional skewness estimator and its precision to be consistent with Bulletin 17B and to make use of such hydrologic information. Another issue addressed by Bulletin 17B is the treatment of low outliers. A Monte Carlo study illustrates the performance of an extended EMA estimator compared to estimators that employ the complete data set with and without use of regional skew, conditional probability adjustment from Bulletin 17B, and an estimator that uses probability plot regression to compute substitute values for low outliers. Estimators that use a regional skew all do better than estimators that fail to use an informative regional skewness estimator. For LP3 data, the low outlier rejection procedure results in no loss of overall accuracy, and the differences between the MSEs of the estimators that used an informative regional skew were generally negligible in the skew range of real interest.
Publication type Conference Paper
Publication Subtype Conference Paper
Title Extension of EMA to address regional skew and low outliers
ISBN 0784406855
Year Published 2003
Language English
Larger Work Title World Water and Environmental Resources Congress
First page 1863
Last page 1872
Conference Title World Water and Environmental Resources Congress 2003
Conference Location Philadelphia, PA
Conference Date 23 June 2003 through 26 June 2003
Google Analytic Metrics Metrics page
Additional publication details