Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration
Links
- More information: Publisher Index Page (via DOI)
- Download citation as: RIS | Dublin Core
Abstract
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ≤ 5500 μg U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 Å was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U−P distance at 3.5−3.6 Å was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ≥ 5500 μg U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 μg U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration |
Series title | Environmental Science & Technology |
DOI | 10.1021/es0343959 |
Volume | 37 |
Issue | 20 |
Publication Date | September 11, 2003 |
Year Published | 2003 |
Language | English |
Publisher | ACS |
Contributing office(s) | Toxic Substances Hydrology Program |
Description | 8 p. |
First page | 4642 |
Last page | 4649 |