1. Pacific salmon are thought to stimulate the productivity of the fresh waters in which they spawn by fertilising them with marine-derived nutrients (MDN). We compared the influence of salmon spawners on surface streamwater chemistry and benthic biota among three southeastern Alaska streams. Within each stream, reaches up- and downstream of barriers to salmon migration were sampled during or soon after spawners entered the streams. 2. Within streams, concentrations of dissolved ammonium and soluble reactive phosphorus (SRP), abundance of epilithon (chlorophyll a and ash-free dry mass) and biomass of chironomids were significantly higher in reaches with salmon spawners. In contrast, biomass of the mayflies Epeorus spp. and Rhithrogena spp. was significantly higher in reaches lacking spawners. 3. Among streams, significant differences were found in concentrations of dissolved ammonium, dissolved organic carbon, nitrate and SRP, abundance of epilithon, and the biomass of chironomids and Rhithrogena. These differences did not appear to reflect differences among streams in spawner density, nor the changes in water chemistry resulting from salmon spawners. 4. Our results suggest that the 'enrichment' effect of salmon spawners (e.g. increased streamwater nutrient concentrations) was balanced by other concurrent effects of spawners on streams (e.g. sediment disturbance). Furthermore, the collective effect of spawners on lotic ecosystems is likely to be constrained by conditions unique to individual streams, such as temperature, background water chemistry and light attenuation.