Landsat Thematic Mapper images and collateral data sources were used to classify the land cover of the Mermentau River Basin within the chenier coastal plain and the adjacent uplands of Louisiana, USA. Landcover classes followed that of the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; however, classification methods needed to be developed to meet these national standards. Our first classification was limited to the Mermentau River Basin (MRB) in southcentral Louisiana, and the years of 1990, 1993, and 1996. To overcome problems due to class spectral inseparable, spatial and spectra continuums, mixed landcovers, and abnormal transitions, we separated the coastal area into regions of commonality and applying masks to specific land mixtures. Over the three years and 14 landcover classes (aggregating the cultivated land and grassland, and water and floating vegetation classes), overall accuracies ranged from 82% to 90%. To enhance landcover change interpretation, three indicators were introduced as Location Stability, Residence stability, and Turnover. Implementing methods substantiated in the multiple date MRB classification, we spatially extended the classification to the entire Louisiana coast and temporally extended the original 1990, 1993, 1996 classifications to 1999 (Figure 1). We also advanced the operational functionality of the classification and increased the credibility of change detection results. Increased operational functionality that resulted in diminished user input was for the most part gained by implementing a classification logic based on forbidden transitions. The logic detected and corrected misclassifications and mostly alleviated the necessity of subregion separation prior to the classification. The new methods provided an improved ability for more timely detection and response to landcover impact. ?? 2005 IEEE.