A magnetotelluric study of the sensitivity of an area to seismoelectric signals

Natural Hazards and Earth System Sciences
By: , and 

Links

Abstract

During recent years, efforts at better understanding the physical properties of precursory ultra-low frequency pre-seismic electric signals (SES) have been intensified. Experiments show that SES cannot be observed at all points of the Earth's surface but only at certain so-called sensitive sites. Moreover, a sensitive site is capable of collecting SES from only a restricted number of seismic areas (selectivity effect). Tberefore the installation of a permanent station appropriate for SES collection should necessarily be preceded by a pilot study over a broad area and for a long duration. In short, a number of temporary stations are installed and, after the occurrence of several significant earthquakes (EQs) from a given seismic area, the most appropriate (if any) of these temporary stations, in the sense that they happen to collect SES, can be selected as permanent. Such a long experiment constitutes a serious disadvantage in identifying a site as SES sensitive. However, the SES sensitivity of a site should be related to the geoelectric structure of the area that hosts the site as well as the regional geoelectric structure between the station and the seismic focal area. Thus, knowledge of the local and regional geoelectric structure can dramatically reduce the time involved in identifying SES sites. hi this paper the magnetotelluric method is used to investigate the conductivity structure of an area where a permanent SES station is in operation. Although general conclusions cannot be drawn, the area surrounding an SES site near Ioannina, Greece is characterized by: (1) major faults in the vicinity; (2) highly resistive structure flanked by abrupt conductivity contrasts associated with large-scale geologic contacts, and (3) local inhomogeneities in conductivity structure. The above results are consistent with the fact that electric field amplitudes from remotely-generated signals should be appreciably stronger at such sites when compared to neighboring sites. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.
Publication type Article
Publication Subtype Journal Article
Title A magnetotelluric study of the sensitivity of an area to seismoelectric signals
Series title Natural Hazards and Earth System Sciences
DOI 10.5194/nhess-5-931-2005
Volume 5
Issue 6
Year Published 2005
Language English
Publisher European Geosciences Union
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Natural Hazards and Earth System Science
First page 931
Last page 946
Google Analytic Metrics Metrics page
Additional publication details