Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska

By: , and 

Links

Abstract

Boreal ecosystems contain a substantial fraction of the earth's soil carbon stores and are prone to frequent and severe wildfires. In this study, we examine changes in element and organic matter stocks due to a 1999 wildfire in Alaska. One year after the wildfire, burned soils contained between 1071 and 1420 g/m2 less carbon than unburned soils. Burned soils had lower nitrogen than unburned soils, higher calcium, and nearly unchanged potassium, magnesium, and phosphorus stocks. Burned surface soils tended to have higher concentrations of noncombustible elements such as calcium, potassium, magnesium, and phosphorus compared with unburned soils. Combustion losses of carbon were mostly limited to surface dead moss and fibric horizons, with no change in the underlying mineral horizons. Burning caused significant changes in soil organic matter structure, with a 12% higher ratio of carbon to combustible organic matter in surface burned horizons compared with unburned horizons. Pyrolysis gas chromatography - mass spectroscopy also shows preferential volatilization of polysaccharide-derived organic matter and enrichment of lignin-and lipid-derived compounds in surface soils. The chemistry of deeper soil layers in burned and unburned sites was similar, suggesting that immediate fire impacts were restricted to the surface soil horizon. ?? 2005 NRC.
Publication type Conference Paper
Publication Subtype Conference Paper
Title Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska
DOI 10.1139/x05-154
Volume 35
Issue 9
Year Published 2005
Language English
Larger Work Title Canadian Journal of Forest Research
First page 2178
Last page 2187
Google Analytic Metrics Metrics page
Additional publication details