thumbnail

Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots

Frontiers in Ecology and the Environment
By: , and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Ground vegetation influences habitat selection and provides critical resources for survival and reproduction of animals. Researchers often employ visual methods to estimate ground cover, but these approaches may be prone to observer bias. We therefore evaluated a method using digital photographs of vegetation to objectively quantify percent ground cover of grasses, forbs, shrubs, litter, and bare ground within 90 plots of 2m2. We carried out object-based image analysis, using a software program called eCognition, to divide photographs into different vegetation classes (based on similarities among neighboring pixels) to estimate percent ground cover for each category. We used the Kappa index of agreement (KIA) to quantify correctly classified, randomly selected segments of all images. Our KIA values indicated strong agreement (> 80%) of all vegetation categories, with an average of 90-96% (SE = 5%) of shrub, litter, forb, and grass segments classified correctly. We also created artificial plots with known percentages of each vegetation category to evaluate the accuracy of software predictions. Observed differences between true cover and eCognition estimates for each category ranged from 1 to 4%. This technique provides a repeatable and reliable way to estimate percent ground cover that allows quantification of classification accuracy. ?? The Ecological Society of America.
Publication type Article
Publication Subtype Journal Article
Title Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots
Series title Frontiers in Ecology and the Environment
Volume 4
Issue 8
Year Published 2006
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Frontiers in Ecology and the Environment
First page 408
Last page 413
Google Analytic Metrics Metrics page
Additional publication details