Regional groundwater flow in mountainous terrain: Three‐dimensional simulations of topographic and hydrogeologic controls

Water Resources Research
By:  and 

Links

Abstract

This study uses numerical simulations to define the salient controls on regional groundwater flow in 3‐D mountainous terrain by systematically varying topographic and hydrogeologic variables. Topography for idealized multiple‐basin mountainous terrain is derived from geomatic data and literature values. Water table elevation, controlled by the ratio of recharge to hydraulic conductivity, largely controls the distribution of recharged water into local, regional, and perpendicular flow systems, perpendicular flow being perpendicular to the regional topographic gradient. Both the relative (%) and absolute (m3/d) values of regional flow and perpendicular flow are examined. The relationship between regional flow and water table elevation is highly nonlinear. With lower water table elevations, relative and absolute regional flow dramatically increase and decrease, respectively, as the water table is lowered further. However, for higher water table elevations above the top of the headwater stream, changes in water table elevation have little effect on regional flow. Local flow predominates in high water table configurations, with regional and perpendicular flow <15% and <10%, respectively, of total recharge in the models tested. Both the relative and the maximum absolute regional flow are directly controlled by the degree of incision of the mountain drainage network; the elevation of mountain ridges is considerably less important. The percentage of the headwater stream with perennial streamflow is a potentially powerful indicator of regional flow in all water table configurations and may be a good indicator of the susceptibility of mountain groundwater systems to increased aridity.

Publication type Article
Publication Subtype Journal Article
Title Regional groundwater flow in mountainous terrain: Three‐dimensional simulations of topographic and hydrogeologic controls
Series title Water Resources Research
DOI 10.1029/2008WR006848
Volume 44
Issue 10
Year Published 2008
Language English
Publisher American Geophysical Union
Description Article W10403; 16 p.
Google Analytic Metrics Metrics page
Additional publication details