The effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge were studied with water level measurements collected from two monitoring wells over a period of 122 days. The two wells were installed under similar conditions except that one was drilled on the east side of a creek which was covered with grass, and the other on the west side of the creek which was burned into a bare ground. Substantial differences in water level fluctuations were observed at these two wells. The water level in the east grass (EG) well was generally lower and had much less response to rainfall events than the west no-grass (WNG) well. Grass cover lowered the water table, reduced soil moisture through ET losses, and thus reduced groundwater recharge. The amount of ET by the grass estimated with a water table recession model decreased exponentially from 7.6 mm/day to zero as the water table declined from near the ground surface to 1.42 m below the ground surface in 33 days. More groundwater recharge was received on the WNG side than on the EG side following large rainfall events and by significant slow internal downward drainage which may last many days after rainfall. Because of the decreased ET and increased R, significantly more baseflow and chemical loads may be generated from a bare ground watershed compared to a vegetated watershed. ?? 2005 Elsevier Ltd All rights reserved.