A component-resampling approach for estimating probability distributions from small forecast ensembles

Climatic Change
By:

Links

Abstract

In many meteorological and climatological modeling applications, the availability of ensembles of predictions containing very large numbers of members would substantially ease statistical analyses and validations. This study describes and demonstrates an objective approach for generating large ensembles of "additional" realizations from smaller ensembles, where the additional ensemble members share important first-and second-order statistical characteristics and some dynamic relations within the original ensemble. By decomposing the original ensemble members into assuredly independent time-series components (using a form of principal component decomposition) that can then be resampled randomly and recombined, the component-resampling procedure generates additional time series that follow the large and small scale structures in the original ensemble members, without requiring any tuning by the user. The method is demonstrated by applications to operational medium-range weather forecast ensembles from a single NCEP weather model and application to a multi-model, multi-emission-scenarios ensemble of 21st Century climate-change projections. ?? Springer 2006.

Publication type Article
Publication Subtype Journal Article
Title A component-resampling approach for estimating probability distributions from small forecast ensembles
Series title Climatic Change
DOI 10.1007/s10584-005-9001-6
Volume 76
Issue 1-2
Year Published 2006
Language English
Contributing office(s) San Francisco Bay-Delta, Pacific Regional Director's Office
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Climatic Change
First page 149
Last page 168
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details