Estimating recharge rates with analytic element models and parameter estimation

Ground Water
By: , and 

Links

Abstract

Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).
Publication type Article
Publication Subtype Journal Article
Title Estimating recharge rates with analytic element models and parameter estimation
Series title Ground Water
DOI 10.1111/j.1745-6584.2005.00115.x
Volume 44
Issue 1
Year Published 2006
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Ground Water
First page 47
Last page 55
Google Analytic Metrics Metrics page
Additional publication details