Interactive visualization to advance earthquake simulation

Pure and Applied Geophysics
By: , and 

Links

Abstract

The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.
Publication type Article
Publication Subtype Journal Article
Title Interactive visualization to advance earthquake simulation
Series title Pure and Applied Geophysics
DOI 10.1007/s00024-008-0317-9
Volume 165
Issue 3-4
Year Published 2008
Language English
Contributing office(s) California Water Science Center
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Pure and Applied Geophysics
First page 621
Last page 633
Google Analytic Metrics Metrics page
Additional publication details