Polychlorinated biphenyls (PCBs) are a widespread aquatic contaminant and are present in both wild and hatchery raised Atlantic salmon, Salmo salar. The possible sub-lethal alterations in smolt physiology and behavior due to PCB exposure of salmon have not been widely examined. In this study, we examined the effects of the PCB mixture Aroclor 1254 on survival and smolt development of Atlantic salmon. In separate experiments, fish were exposed as yolk-sac larvae or as juveniles just prior to the parr-smolt transformation in April to 1 ??g l-1 (PCB-1) or 10 ??g l-1 (PCB-10) aqueous Aroclor 1254 (A1254), or vehicle for 21 days. After exposure, yolk-sac larvae were reared at ambient conditions for 1 year, until the peak of smolting the following May. Juveniles were sampled immediately after exposure. Both groups were assessed for behavioral, osmoregulatory, and endocrine disruption of smolt development at the peak of smolting. PCB-1 and PCB-10 treated yolk-sac larvae exhibited significant increases in the rate of opercular movement after 14 and 21 days of exposure. At the peak of smolting, prior exposure as yolk-sac larvae to PCB-1 did not affect behavior, while PCB-10 dramatically decreased volitional preference for seawater. Neither concentration of A1254 had long-term effects on the osmoregulatory or endocrine parameters measured in animals exposed as yolk-sac larvae. Juvenile fish exposed to PCB-1 or PCB-10 during smolting exhibited a dose-dependent reduction in preference for seawater. Fish treated with the higher dose of A1254 also exhibited a 50% decrease in gill Na+,K+-ATPase activity and a 10% decrease in plasma chloride levels in freshwater. In addition, plasma triiodothyronine was reduced 35-50% and plasma cortisol 58% in response to exposure to either concentration; whereas plasma thyroxine, growth hormone, and insulin-like growth factor I levels were unaffected. These results indicate that the effects of exposure to A1254 may vary according to developmental stage. Exposure to A1254 in the freshwater environment can inhibit preparatory adaptations that occur during smolting, thereby reducing marine survival and sustainability of salmon populations. ?? 2007 Elsevier B.V. All rights reserved.