Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

Journal of Geophysical Research B: Solid Earth
By:  and 



Pull‐apart basins are narrow zones of crustal extension bounded by strike‐slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2‐D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long‐lived pull‐apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8–8.5 km) and widest (∼15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre‐basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3–4 km under the northern end of the lake and 5–6 km farther north. Crystalline basement is ∼11 km deep under the deepest part of the basin. The upper crust under the basin has lowerPwave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ∼18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ∼17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter‐connected mid‐crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux into a slowly extending continental crust can cause rapid basin subsidence that may be erroneously interpreted as an increased rate of tectonic activity.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1029/2011JB008711
Volume 117
Issue B1
Year Published 2012
Language English
Publisher American Geophysical Union
Contributing office(s) Coastal and Marine Geology Program
Description B01406, 21 p.
Country United States
Other Geospatial Dead Sea shoreline
Google Analytic Metrics Metrics page
Additional publication details