Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida

Marine Chemistry
By: , and 

Links

Abstract

A suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during wet and dry conditions in Tampa Bay, Florida, to evaluate their utility as groundwater discharge tracers, both within the bay proper and within the Alafia River/estuary — a prominent free-flowing river that empties into the bay. In Tampa Bay, almost 30% of the combined riverine inputs still remain ungauged. Consequently, groundwater/surface water (hyporheic) exchange in the discharging coastal rivers, as well as submarine groundwater discharge (SGD) within the bay, are still unresolved components of this system's water and material budgets.


Based on known inputs and sinks, there exists an excess of 226Ra in the water column of Tampa Bay, which can be evaluated in terms of a submarine groundwater contribution to the bay proper. Submarine groundwater discharge rates calculated using a mass balance of excess 226Ra ranged from 2.2 to 14.5 L m− 2 day− 1, depending on whether the estuarine residence time was calculated using 224Ra/xs228Ra isotope ratios, or whether a long term, averaged model-derived estuarine residence time was used. When extrapolated to the total shoreline length of the bay, such SGD rates ranged from 1.6 to 10.3 m3 m− 1 day− 1. Activities of 222Rn were also elevated in surface water and shallow groundwater of the bay, as well as in the Alafia River estuary, where upstream activities as high as 250 dpm L− 1 indicate enhanced groundwater/surface water exchange, facilitated by an active spring vent. From average nutrient concentrations of 39 shallow, brackish, groundwater samples, rates of nutrient loading into Tampa Bay by SGD rates were estimated, and these ranged from 0.2 to 1.4 × 105 mol day− 1 (PO43−), 0.9–6.2 × 105 mol day− 1 (SiO4), 0.7–5.0 × 105 mol day− 1 (dissolved organic nitrogen, DON), and 0.2–1.4 × 106 mol day− 1 (total dissolved nitrogen, TDN). Such nutrient loading estimates, when compared to average river discharge estimates (e.g., TDN = 6.9 × 105 mol day− 1), suggest that SGD-derived nutrient fluxes to Tampa Bay are indeed important components to the overall nutrient economy of these coastal waters.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida
Series title Marine Chemistry
DOI 10.1016/j.marchem.2006.08.001
Volume 104
Issue 1-2
Year Published 2007
Language English
Publisher Elsevier
Contributing office(s) Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center
Description 16 p.
First page 69
Last page 84
Country United States
State Florida
Other Geospatial Tampa Bay
Google Analytic Metrics Metrics page
Additional publication details