The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.