Field observations and numerical simulations are used to explore tsunami inundation and sediment transport in an embayment (Fagafue Bay) on the north side of Tutuila, American Samoa during the 29 September 2009 South Pacific tsunami. Field observations of the nearshore bathymetry and topography, tsunami flow depth and sediment deposition, and extent of movable sandy sediment remaining on the beach were collected during two field surveys approximately two and five weeks after the tsunami. Onshore measurements of flow depth at forty-eight locations indicate the wave inundated almost 250. m onshore with a depth exceeding 7. m locally. The tsunami deposited patchy areas of sediment up to 0.2. m thick interspersed with a thin dusting (< 0.01 m) of sandy sediment throughout most of the inundated area. A numerical simulation based on the best available topography and bathymetry and a simplified offshore wave forcing is calibrated with the onshore flow observations. The calibrated model is used to simulate tsunami-induced sediment transport within and onshore of both the actual embayment and several idealized embayments. The simulations show that the onshore deposition of sediment can be affected by more than 50% by both the amount of sediment available for transport and the steepness of the onshore topography, suggesting these effects may need to be considered when interpreting tsunami deposits.