Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

Ecology
By: , and 

Links

Abstract

Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.
Publication type Article
Publication Subtype Journal Article
Title Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition
Series title Ecology
DOI 10.1890/08-1742.1
Volume 90
Issue 11
Year Published 2009
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Ecology
First page 3062
Last page 3073
Google Analytic Metrics Metrics page
Additional publication details