We examined the relationships of clutch size (CS) and egg size to female body size (straight-line carapace length, CL) in a population of the turtle Mauremys leprosa from a polluted segment of oued (river) Tensift in arid west-central Morocco. Twenty-eight adult females were collected in May–July, 2009 and all were gravid. Each was weighed, measured, humanely euthanized and then dissected. Oviductal shelled eggs were removed, weighed (egg mass, EM) and measured for length (EL) and width (EW). Clutch mass (CM) was the sum of EM for a clutch. Pelvic aperture width (PAW) was measured at the widest point between the ilia bones through which eggs must pass at oviposition. The smallest gravid female had a CL of 124.0 mm. Mean CS was relatively large (9.7±2.0 eggs, range: 3–13) and may reflect high productivity associated with polluted (eutrophic) waters. Regression analyses were conducted using log-transformed data. CM increased isometrically with maternal body size. CS, EW and EM were all significantly hypoallometric in their relationship with CL. EL did not change significantly with increases in CL. EW increased at a hypoallometric rate with increasing CL but was unconstrained by PAW since the widest egg was smaller than the narrowest PAW measurement when excluding the three smallest females. Smaller females may have EW constrained by PAW. As females increase in size they increase both clutch size and egg width in contradiction to predictions of optimal egg size theory.