Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery-propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment-producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.