After a severe population reduction during the mid-20th century, the endangered Hawaiian Goose (Branta sandvicensis), or Nēnē, has only recently re-established its seasonal movement patterns on Hawai‘i Island. Little is currently understood about its movements and habitat use during the nonbreeding season. The objectives of this research were to identify habitats preferred by two subpopulations of the Nēnē and how preferences shift seasonally at both meso-and fine scales. From 2009 to 2011, ten Nēnē ganders were outfitted with 40-to 45-g satellite transmitters with GPS capability. We used binary logistic regression to compare habitat use versus availability and an information-theoretic approach for model selection. Meso-scale habitat modeling revealed that Nēnē preferred exotic grass and human-modified landscapes during the breeding and molting seasons and native subalpine shrubland during the nonbreeding season. Fine-scale habitat modeling further indicated preference for exotic grass, bunch grass, and absence of trees. Proximity to water was important during molt, suggesting that the presence of water may provide escape from introduced mammalian predators while Nēnē are flightless. Finescale species-composition data added relatively little to understanding of Nēnē habitat preferences modeled at the meso scale, suggesting that the meso-scale is appropriate for management planning. Habitat selection during our study was consistent with historical records, although dissimilar from more recent studies of other subpopulations. Nēnē make pronounced seasonal movements between existing reserves and use distinct habitat types; understanding annual patterns has implications for the protection and restoration of important seasonal habitats.