Phytoplankton are small to microscopic, free-floating algae that inhabit the open water of freshwater, estuarine, and saltwater systems. In freshwater lake and reservoirs systems, which are the focus of this chapter, phytoplankton communities commonly consist of assemblages of the major taxonomic groups, including green algae, diatoms, dinoflagellates, and cyanobacteria. Cyanobacteria are a diverse group of single-celled organisms that can exist in a wide range of environments, not just open water, because of their adaptability [1-3]. It is the adaptability of cyanobacteria that enables this group to dominate the phytoplankton community and even form nuisance or harmful blooms under certain environmental conditions [3-6]. In fact, cyanobacteria are predicted to adapt favorably to future climate change in freshwater systems compared to other phytoplankton groups because of their tolerance to rising temperatures, enhanced vertical thermal stratification of aquatic ecosystems, and alterations in seasonal and interannual weather patterns [7, 8]. Understanding those environmental conditions that favor cyanobacterial dominance and bloom formation has been the focus of research throughout the world because of the concomitant production and release of nuisance and toxic cyanobacterial-derived compounds [4-6, 7-10]. However, the complex interaction among the physical, chemical, and biological processes within lakes, reservoirs, and large rivers often makes it difficult to identify primary environmental factors that cause the production and release of these cyanobacterial by-products.