Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

Permafrost and Periglacial Processes
By: , and 

Links

Abstract

Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska
Series title Permafrost and Periglacial Processes
DOI 10.1002/ppp.1775
Volume 24
Issue 3
Year Published 2013
Language English
Publisher Wiley
Contributing office(s) Earth Resources Observation and Science (EROS) Center
Description 16 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Permafrost and Periglacial Processes
First page 184
Last page 199
Country United States
State Alaska
Other Geospatial Yukon Flats
Google Analytic Metrics Metrics page
Additional publication details