Links
- The Publications Warehouse does not have links to digital versions of this publication at this time
- Download citation as: RIS | Dublin Core
Abstract
Augustine Volcano is the most historically active volcano in Alaska's populous Cook Inlet region. Past on-island work on pre-historic tephra deposits mainly focused on using tephra layers as markers to help distinguish among prevalent debris-avalanche deposits on the island (Waitt and Beget, 2009, USGS Prof Paper 1762), or as source material for petrogenetic studies. No comprehensive reference study of tephra fall from Augustine Volcano previously existed. Numerous workers have identified Holocene-age tephra layers in the region surrounding Augustine Island, but without well-characterized reference deposits, correlation back to the source volcano is difficult. The purpose of this detailed tephra study is to provide a record of eruption frequency and magnitude, as well as to elucidate physical and chemical characteristics for use as reference standards for comparison with regionally distributed Augustine tephra layers. Whole rock major- and trace-element geochemistry, deposit componentry, and field context are used to correlate tephra units on the island where deposits are coarse grained. Major-element glass geochemistry was collected for use in correlating to unknown regional tephra. Due to the small size of the volcanic island (9 by 11 km in diameter) and frequent eruptive activity, on-island exposures of tephra deposits older than a couple thousand years are sparse, and the lettered Tephras B, M, C, H, I, and G of Waitt and Beget (2009) range in age from 370-2200 yrs B.P. There are, however, a few exposures on the south side of the volcano, within about 2 km of the vent, where stratigraphic sections that extend back to the late Pleistocene glaciation include coarse pumice-fall deposits. We have linked the letter-named tephras from the coast to these higher exposures on the south side using physical and chemical characteristics of the deposits. In addition, these exposures preserve at least 5 older major post-glacial eruptions of Augustine. These ultra-proximal sites, along with an off-island section 20 km to the west, provide the first continuous tephrochronology for Augustine that extends from the earliest to latest Holocene. Because examined pumice-fall exposures are limited to a narrow azimuth on the south side of the volcano, the on-island record is likely an incomplete catalog of major eruptions. It is possible however, that the coarse-grained near vent exposures (within 2 km) represent large eruptions that blanketed the entire island in tephra and are representative of the entire Holocene record. The major Holocene tephra units exposed on-island are composed of coarse-grained (cm-scale) pumice ranging in color from white to cream (variably oxidized), and light to medium gray as well as banded varieties. Accidental lithic assembles are highly variable and often unique for individual eruptions. Pumices range from 60-66 wt % SiO2 in whole-rock composition and are distinguishable using trace and minor element abundances and field context. Glass geochemistry is often distinguishable between tephras, but more overlap exists among deposits and presents challenges for correlating to regional tephras.
Study Area
Publication type | Book |
---|---|
Publication Subtype | Conference publication |
Title | Constructing a reference tephrochronology for Augustine Volcano, Alaska |
Year Published | 2013 |
Language | English |
Publisher | American Geophysical Union |
Publisher location | Washington, D.C. |
Larger Work Title | American Geophysical Union, Fall Meeting 2013 |
Conference Title | American Geophysical Union, Fall Meeting 2013 |
Conference Location | San Francisco, CA |
Conference Date | 2013-12-09T00:00:00 |
Country | United States |
State | Alaska |
Other Geospatial | Cook Inlet |
Google Analytic Metrics | Metrics page |