Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

Global Change Biology
By: , and 

Links

Abstract

The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.
Publication type Article
Publication Subtype Journal Article
Title Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model
Series title Global Change Biology
DOI 10.1111/gcb.12392
Volume 20
Issue 3
Year Published 2013
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Coop Res Unit Seattle
Description 16 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Global Change Biology
First page 963
Last page 978
Google Analytic Metrics Metrics page
Additional publication details