Interactions between hyporheic flow produced by stream meanders, bars, and dunes

Water Resources Research
By: , and 



Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.
Publication type Article
Publication Subtype Journal Article
Title Interactions between hyporheic flow produced by stream meanders, bars, and dunes
Series title Water Resources Research
DOI 10.1002/wrcr.20400
Volume 49
Issue 9
Year Published 2013
Language English
Publisher Wiley
Contributing office(s) Water Resources Discipline
Description 12 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Water Resources Research
First page 5450
Last page 5461
Google Analytic Metrics Metrics page
Additional publication details