Recent parallel development of improved quantitative methods to analyze intensity distributions for historical earthquakes and of web‐based systems for collecting intensity data for modern earthquakes provides an opportunity to reconsider not only important individual historical earthquakes but also the overall characterization of intensity distributions for historical events. The focus of this study is a comparison between intensity distributions of historical earthquakes with those from modern earthquakes for which intensities have been determined by the U.S. Geological Survey “Did You Feel It?” (DYFI) website (see Data and Resources). As an example of a historical earthquake, I focus initially on the 1843 Marked Tree, Arkansas, event. Its magnitude has been previously estimated as 6.0–6.2. I first reevaluate the macroseismic effects of this earthquake, assigning intensities using a traditional approach, and estimate a preferred magnitude of 5.4. Modified Mercalli intensity (MMI) values for the Marked Tree earthquake are higher, on average, than those from the 2011 >Mw 5.8 Mineral, Virginia, earthquake for distances ≤500 km but comparable or lower on average at larger distances, with a smaller overall felt extent. Intensity distributions for other moderate historical earthquakes reveal similar discrepancies; the discrepancy is also even more pronounced using earlier published intensities for the 1843 earthquake. I discuss several hypotheses to explain the discrepancies, including the possibility that intensity values associated with historical earthquakes are commonly inflated due to reporting/sampling biases. A detailed consideration of the DYFI intensity distribution for the Mineral earthquake illustrates how reporting and sampling biases can account for historical earthquake intensity biases as high as two intensity units and for the qualitative difference in intensity distance decays for modern versus historical events. Thus, intensity maps for historical earthquakes tend to imply more widespread damage patterns than are revealed by intensity distributions of modern earthquakes of comparable magnitude. However, intensity accounts of historical earthquakes often include fragmentary accounts suggesting long‐period shaking effects that will likely not be captured fully in historical intensity distributions.