Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States
Links
- More information: Publisher Index Page (via DOI)
- Download citation as: RIS | Dublin Core
Abstract
BACKGROUND
Complex environmental models are frequently extrapolated to overcome data limitations in space and time, but quantifying data worth to such models is rarely attempted. The authors determined which field observations most informed the parameters of agricultural system models applied to field sites in Nebraska (NE) and Maryland (MD), and identified parameters and observations that most influenced prediction uncertainty.
RESULTS
The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0 and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55–90% at NE and by 28–96% at MD. Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had comparatively larger contributions after model calibration.
CONCLUSIONS
Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.
RESULTS: The standard error of regression of the calibrated models was about the same at both NE (0.59) and MD (0.58), and overall reductions in prediction uncertainties of metolachlor and metolachlor ethane sulfonic acid concentrations were 98.0 and 98.6% respectively. Observation data groups reduced the prediction uncertainty by 55–90% at NE and by 28–96% at MD. Soil hydraulic parameters were well informed by the observed data at both sites, but pesticide and macropore properties had comparatively larger contributions after model calibration.
CONCLUSIONS: Although the observed data were sparse, they substantially reduced prediction uncertainty in unsampled regions of pesticide breakthrough curves. Nitrate evidently functioned as a surrogate for soil hydraulic data in well-drained loam soils conducive to conservative transport of nitrogen. Pesticide properties and macropore parameters could most benefit from improved characterization further to reduce model misfit and prediction uncertainty.
Study Area
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Data worth and prediction uncertainty for pesticide transport and fate models in Nebraska and Maryland, United States |
Series title | Pest Management Science |
DOI | 10.1002/ps.3875 |
Volume | 71 |
Issue | 7 |
Year Published | 2015 |
Language | English |
Publisher | Wiley |
Contributing office(s) | National Water Quality Assessment Program |
Description | 14 p. |
First page | 972 |
Last page | 985 |
Country | United States |
State | Maryl;Nebraska |
Online Only (Y/N) | N |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |