Complex resistivity signatures of ethanol biodegradation in porous media

Journal of Contaminant Hydrology
By: , and 

Links

Abstract

Numerous adverse effects are associated with the accidental release of ethanol (EtOH) and its persistence in the subsurface. Geophysical techniques may permit non-invasive, real time monitoring of microbial degradation of hydrocarbon. We performed complex resistivity (CR) measurements in conjunction with geochemical data analysis on three microbial-stimulated and two control columns to investigate changes in electrical properties during EtOH biodegradation processes in porous media. A Debye Decomposition approach was applied to determine the chargeability (m), normalized chargeability (mn) and time constant (τ) of the polarization magnitude and relaxation length scale as a function of time. The CR responses showed a clear distinction between the bioaugmented and control columns in terms of real (σ′) and imaginary (σ″) conductivity, phase (ϕ) and apparent formation factor (Fapp). Unlike the control columns, a substantial decrease in σ′ and increase in Fapp occurred at an early time (within 4 days) of the experiment for all three bioaugmented columns. The observed decrease in σ′ is opposite to previous studies on hydrocarbon biodegradation. These columns also exhibited increases in ϕ (up to ~ 9 mrad) and σ″ (up to two order of magnitude higher) 5 weeks after microbial inoculation. Variations in m and mn were consistent with temporal changes in ϕ and σ″ responses, respectively. Temporal geochemical changes and high resolution scanning electron microscopy imaging corroborated the CR findings, thus indicating the sensitivity of CR measurements to EtOH biodegradation processes. Our results offer insight into the potential application of CR measurements for long-term monitoring of biogeochemical and mineralogical changes during intrinsic and induced EtOH biodegradation in the subsurface.

Publication type Article
Publication Subtype Journal Article
Title Complex resistivity signatures of ethanol biodegradation in porous media
Series title Journal of Contaminant Hydrology
DOI 10.1016/j.jconhyd.2013.07.005
Volume 153
Year Published 2013
Language English
Publisher Elsevier
Contributing office(s) New Jersey Water Science Center
Description 14 p.
First page 37
Last page 50
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details