Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data
Links
- More information: Publisher Index Page (via DOI)
- Download citation as: RIS | Dublin Core
Abstract
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Study Area
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Previously unrecognized regional structure of the Coastal Belt of the Franciscan Complex, northern California, revealed by magnetic data |
Series title | Geosphere |
DOI | 10.1130/GES00942.1 |
Volume | 9 |
Year Published | 2013 |
Language | English |
Publisher | Geological Society of America |
Contributing office(s) | Geology, Minerals, Energy, and Geophysics Science Center |
Description | 18 p. |
First page | 1 |
Last page | 17 |
Country | United States |
State | California |
Other Geospatial | Coastal Belt of the Franciscan Complex |
Online Only (Y/N) | N |
Additional Online Files (Y/N) | N |
Google Analytic Metrics | Metrics page |