Hydrology of the North Cascades region, Washington: 2. A proposed hydrometeorological streamflow prediction method

Water Resources Research
By:  and 

Links

Abstract

On the basis of a linear relationship between winter (October-April) precipitation and annual runoff from a drainage basin (Rasmussen and Tangborn, 1976) a physically reasonable model for predicting summer (May-September) streamflow from drainages in the North Cascades region was developed. This hydrometeorological prediction method relates streamflow for a season beginning on the day of prediction to the storage (including snow, ice, soil moisture, and groundwater) on that day. The spring storage is inferred from an input-output relationship based on the principle of conservation of mass: spring storage equals winter precipitation on the basin less winter runoff from the basin and less winter evapotranspiration, which is presumed to be small. The method of prediction is based on data only from the years previous to the one for which the prediction is made, and the system is revised each year as data for the previous year become available. To improve the basin storage estimate made in late winter or early spring, a short-season runoff prediction is made. The errors resulting from this short-term prediction are used to revise the storage estimate and improve the later prediction. This considerably improves the accuracy of the later prediction, especially for periods early in the summer runoff season. The optimum length for the test period appears to be generally less than a month for east side basins and between 1 and 2 months for those on the west side of the Cascade Range. The time distribution of the total summer runoff can be predicted when this test season is used so that on May 1 monthly streamflow for the May-September season can be predicted. It was found that summer precipitation and the time of minimum storage are two error sources that were amenable to analysis. For streamflow predictions in seasons beginning in early spring the deviation of the subsequent summer precipitation from a long-period average will contribute up to 53% of the prediction error. This contribution decreases to nearly zero during the summer and then rises slightly for late summer predictions. The reason for the smaller than expected effect of summer precipitation is thought to be due to the compensating effect of increased evaporative losses and increased infiltration when precipitation is greater than normal during the summer months. The error caused by the beginning winter month (assumed to be October in this study) not coinciding with the time of minimum storage was examined; it appears that October may be the best average beginning winter month for most drainages but that a more detailed study is needed. The optimum beginning of the winter season appears to vary from August to October when individual years are examined. These results demonstrate that standard precipitation and runoff measurements in the North Cascades region are adequate for constructing a predictive hydrologic model. This model can be used to make streamflow predictions that compare favorably with current multiple regression methods based on mountain snow surveys. This method has the added advantages of predicting the space and time distributions of storage and summer runoff.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Hydrology of the North Cascades region, Washington: 2. A proposed hydrometeorological streamflow prediction method
Series title Water Resources Research
DOI 10.1029/WR012i002p00203
Volume 12
Issue 2
Year Published 1976
Language English
Publisher American Geophysical Union
Contributing office(s) Washington Water Science Center
Description 14 p.
First page 203
Last page 216
Country United States
State Washington
Other Geospatial Cascade Mountains
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details