Using structural equation modeling to link human activities to wetland ecological integrity

By: , and 



The integrity of wetlands is of global concern. A common approach to evaluating ecological integrity involves bioassessment procedures that quantify the degree to which communities deviate from historical norms. While helpful, bioassessment provides little information about how altered conditions connect to community response. More detailed information is needed for conservation and restoration. We have illustrated an approach to addressing this challenge using structural equation modeling (SEM) and long-term monitoring data from Rocky Mountain National Park (RMNP). Wetlands in RMNP are threatened by a complex history of anthropogenic disturbance including direct alteration of hydrologic regimes; elimination of elk, wolves, and grizzly bears; reintroduction of elk (absent their primary predators); and the extirpation of beaver. More recently, nonnative moose were introduced to the region and have expanded into the park. Bioassessment suggests that up to half of the park's wetlands are not in reference condition. We developed and evaluated a general hypothesis about how human alterations influence wetland integrity and then develop a specific model using RMNP wetlands. Bioassessment revealed three bioindicators that appear to be highly sensitive to human disturbance (HD): (1) conservatism, (2) degree of invasion, and (3) cover of native forbs. SEM analyses suggest several ways human activities have impacted wetland integrity and the landscape of RMNP. First, degradation is highest where the combined effects of all types of direct HD have been the greatest (i.e., there is a general, overall effect). Second, specific HDs appear to create a “mixed-bag” of complex indirect effects, including reduced invasion and increased conservatism, but also reduced native forb cover. Some of these effects are associated with alterations to hydrologic regimes, while others are associated with altered shrub production. Third, landscape features created by historical beaver activity continue to influence wetland integrity years after beavers have abandoned sites via persistent landforms and reduced biomass of tall shrubs. Our model provides a system-level perspective on wetland integrity and provides a context for future evaluations and investigations. It also suggests scientifically supported natural resource management strategies that can assist in the National Park Service mission of maintaining or, when indicated, restoring ecological integrity “unimpaired for future generations.”

Study Area

Publication type Article
Publication Subtype Journal Article
Title Using structural equation modeling to link human activities to wetland ecological integrity
Series title Ecosphere
DOI 10.1002/ecs2.1548
Volume 7
Issue 11
Year Published 2016
Language English
Publisher Ecological Society of America
Contributing office(s) Wetland and Aquatic Research Center
Description e01548; 30 p.
First page 1
Last page 30
Country United States
State Colorado
Other Geospatial Rocky Mountain National Park
Google Analytic Metrics Metrics page
Additional publication details