Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana

Hydrological Processes
By:  and 

Links

Abstract

Changes in stream chemistry were studied for 4 years following large wildfires that burned in Glacier National Park during the summer of 2003. Burned and unburned drainages were monitored from December 2003 through August 2007 for streamflow, major constituents, nutrients, and suspended sediment following the fires. Stream-water nitrate concentrations showed the greatest response to fire, increasing up to tenfold above those in the unburned drainage just prior to the first post-fire snowmelt season. Concentrations in winter base flow remained elevated during the entire study period, whereas concentrations during the growing season returned to background levels after two snowmelt seasons. Annual export of total nitrogen from the burned drainage ranged from 1·53 to 3·23 kg ha−1 yr−1 compared with 1·01 to 1·39 kg ha−1 yr−1 from the unburned drainage and exceeded atmospheric inputs for the first two post-fire water years. Fire appeared to have minimal long-term effects on other nutrients, dissolved organic carbon, and major constituents with the exception of sulfate and chloride, which showed increased concentrations for 2 years following the fire. There was little evidence that fire affected suspended-sediment concentrations in the burned drainage. Sediment yields in subalpine streams may be less affected by fire than in lower elevation streams because of the slow release rate of water during spring snowmelt.

Publication type Article
Publication Subtype Journal Article
Title Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana
Series title Hydrological Processes
DOI 10.1002/hyp.7121
Volume 22
Issue 26
Year Published 2008
Language English
Publisher Wiley
Contributing office(s) Colorado Water Science Center
Description 11 p.
First page 5013
Last page 5023
Google Analytic Metrics Metrics page
Additional publication details