A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)

Conservation Genetics
By: , and 

Links

  • More information: Publisher Index Page (via DOI) Publicly accessible after 9/29/2016 (public access data via CHORUS)
  • Data Release: USGS data release - A Century of Landscape Disturbance and Urbanization of the San Francisco Bay Region affects the Present-day Genetic Diversity of the California Ridgways Rail (Rallus obsoletus obsoletus).
  • Download citation as: RIS | Dublin Core

Abstract

Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.

Study Area

Publication type Article
Publication Subtype Journal Article
Title A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)
Series title Conservation Genetics
DOI 10.1007/s10592-016-0888-4
Volume 18
Issue 1
Year Published 2017
Language English
Publisher Springer
Contributing office(s) San Francisco Bay-Delta, Western Ecological Research Center
Description 16 p.
First page 131
Last page 146
Country United States
State California
Other Geospatial San Francisco Bay
Google Analytic Metrics Metrics page
Additional publication details