Paleogeographic implications of Late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River

Geosphere
By: , and 

Links

Abstract

Thick late Miocene nonmarine evaporite (mainly halite and gypsum) and related lacustrine limestone deposits compose the upper basin fill in half grabens within the Lake Mead region of the Basin and Range Province directly west of the Colorado Plateau in southern Nevada and northwestern Arizona. Regional relations and geochronologic data indicate that these deposits are late synextensional to postextensional (ca. 12–5 Ma), with major extension bracketed between ca. 16 and 9 Ma and the abrupt western margin of the Colorado Plateau established by ca. 9 Ma. Significant accommodation space in the half grabens allowed for deposition of late Miocene lacustrine and evaporite sediments. Concurrently, waning extension promoted integration of initially isolated basins, progressive enlargement of drainage nets, and development of broad, low gradient plains and shallow water bodies with extensive clastic, carbonate, and/or evaporite sedimentation. The continued subsidence of basins under restricted conditions also allowed for the preservation of particularly thick, localized evaporite sequences prior to development of the through-going Colorado River.

The spatial and temporal patterns of deposition indicate increasing amounts of freshwater input during the late Miocene (ca. 12–6 Ma) immediately preceding arrival of the Colorado River between ca. 5.6 and 4.9 Ma. In axial basins along and proximal to the present course of the Colorado River, evaporite deposition (mainly gypsum) transitioned to lacustrine limestone progressively from east to west, beginning ca. 12–11 Ma in the Grand Wash Trough in the east and shortly after ca. 5.6 Ma in the western Lake Mead region. In several satellite basins to both the north and south of the axial basins, evaporite deposition was more extensive, with thick halite (>200 m to 2.5 km thick) accumulating in the Hualapai, Overton Arm, and northern Detrital basins. Gravity and magnetic lows suggest that thick halite may also lie within the northern Grand Wash, Mesquite, southern Detrital, and northeastern Las Vegas basins. New tephrochronologic data indicate that the upper part of the halite in the Hualapai basin is ca. 5.6 Ma, with rates of deposition of ∼190–450 m/m.y., assuming that deposition ceased approximately coincidental with the arrival of the Colorado River. A 2.5-km-thick halite sequence in the Hualapai basin may have accumulated in ∼5–7 m.y. or ca. 12–5 Ma, which coincides with lacustrine limestone deposition near the present course of the Colorado River in the region.

The distribution and similar age of the limestone and evaporite deposits in the region suggest a system of late Miocene axial lakes and extensive continental playas and salt pans. The playas and salt pans were probably fed by both groundwater discharge and evaporation from shallow lakes, as evidenced by sedimentary textures. The elevated terrain of the Colorado Plateau was likely a major source of water that fed the lakes and playas. The physical relationships in the Lake Mead region suggest that thick nonmarine evaporites are more likely to be late synextensional and accumulate in basins with relatively large catchments proximal to developing river systems or broad elevated terranes. Other basins adjacent to the lower Colorado River downstream of Lake Mead, such as the Dutch Flat, Blythe-McCoy, and Yuma basins, may also contain thick halite deposits.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Paleogeographic implications of Late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River
Series title Geosphere
DOI 10.1130/GES01143.1
Volume 12
Issue 3
Year Published 2016
Language English
Publisher Geological Society of America
Contributing office(s) Eastern Geology and Paleoclimate Science Center, Geology, Minerals, Energy, and Geophysics Science Center
Description 37 p.
First page 721
Last page 767
Country United States
State Arizona, Nevada
Other Geospatial Colorado River, Lake Mead region
Google Analytic Metrics Metrics page
Additional publication details