Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland

Water Resources Research
By:

Links

Abstract

Eddy correlation measurements of sensible and latent heat flux are used with measurements of net radiation, soil heat flux, and other micrometeorological variables to develop the Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for use in a sparsely vegetated, semiarid rangeland. The Penman-Monteith model, a one-component model designed for use with dense crops, is not sufficiently accurate (r2 = 0.56 for hourly data and r2 = 0.60 for daily data). The Shuttleworth-Wallace model, a two-component logical extension of the Penman-Monteith model for use with sparse crops, performs significantly better (r2 = 0.78 for hourly data and r2 = 0.85 for daily data). The modified Priestley-Taylor model, a one-component simplified form of the Penman potential evapotranspiration model, surprisingly performs as well as the Shuttle worth-Wallace model. The rigorous Shuttleworth-Wallace model predicts that about one quarter of the vapor flux to the atmosphere is from bare-soil evaporation. Further, during daylight hours, the small leaves are sinks for sensible heat produced at the hot soil surface.

Publication type Article
Publication Subtype Journal Article
Title Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Priestley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland
Series title Water Resources Research
DOI 10.1029/93WR00333
Volume 29
Issue 5
Year Published 1993
Language English
Publisher American Geophysical Union
Contributing office(s) Toxic Substances Hydrology Program, U.S. Geological Survey, Contaminant Biology Program
Description 14 p.
First page 1379
Last page 1392
Google Analytic Metrics Metrics page
Additional publication details