Selection for salt tolerance in tidal freshwater swamp species: Advances using baldcypress as a model for restoration: Chapter 14

By: , and 

Links

Abstract

Worldwide, the intrusion of salinity into irrigated and natural landscapes has major economic and cultural impacts and has resulted in large reductions in crop yields (Epstein et al. 1980; Flowers 2003). Losses have prompted wide-scale programs to improve the salt tolerance of many agronomic species or to identify crop species that can tolerate lands affected by low levels of salinity. Few historic research efforts have considered forest tree species in the United States, especially in nonurban areas.

Newer programs have focused on identifying salt tolerance in forest tree species but have mainly limited these efforts to compiling lists of salt tolerant species to be used in afforestation projects (Gogate et al. 1984; Shrivastava et al. 1988; Beckmann 1991; Bell 1999). Gogate et al. (1984), for instance, listed 26 potential species from Australia with silvicultural application to salt affected lands in India. More comprehensive efforts have considered species lists along with specific site requirements (Bell 1999); species tolerant to saline irrigation waters on dry land, for example, will not often be tolerant of salinity increases in wetland settings. Similar ideas have spawned field trials of native and nonnative tree species in India, Pakistan, Thailand, Australia, and the United States (Thomson 1988; Beckmann 1991; Krauss et al. 2000; Conner and Ozalp 2002; Marcar and Crawford 2004; Conner and Inabinette 2005).

Concerted attempts at salt tolerance improvement of forest tree species have been limited, owing in part to the diversity of regional issues that such programs must consider. Whereas food, fodder, and pulp yield may be the major improvement goal on salt affected lands in India (Mathur and Sharma 1984), identifying trees that can survive deicing salts (Townsend 1989), oil and gas brine discharges (Auchmoody and Walters 1988), or sea-level rise induced salinity changes (Pezeshki et al. 1987, 1990) are of greater interest to larger industrial nations. Nevertheless, salt tolerance research on a range of tree species has converged on one very important finding; among the mechanisms proposed for salt tolerance in nonhalophytes (Greenway and Munns 1980; Munns and Termaat 1986; Cheeseman 1988), ion exclusion from cellular processes, especially exclusion of Cl- , ranks high (Townsend 1989). Identifying the principal mechanism and location of ion exclusion and determining the range of additive genetic variation available among physiological, morphological, and growth attributes for individual species have been the major elements of salt tolerance improvement programs for trees (Allen et al. 1994a).

Study Area

Publication type Book chapter
Publication Subtype Book Chapter
Title Selection for salt tolerance in tidal freshwater swamp species: Advances using baldcypress as a model for restoration: Chapter 14
DOI 10.1007/978-1-4020-5095-4_14
Year Published 2007
Language English
Publisher Springer
Publisher location Dordrecht
Description 26 p.
Larger Work Type Book
Larger Work Subtype Monograph
Larger Work Title Ecology of tidal freshwater forested wetlands of the southeastern United States
First page 385
Last page 410
Country United States
Google Analytic Metrics Metrics page
Additional publication details