Evidence from xenoliths for a dynamic lower crust, eastern Mojave Desert, California

Journal of Petrology
By: , and 

Links

Abstract

Garnet-rich xenoliths in a Tertiary dike in the eastern Mojave Desert, California, preserve information about the nature and history of the lower crust. These xenoliths record pressures of ∼ 10–12 kbar and temperatures of ∼ 750–800°C. Approximately 25% have mafic compositions and bear hornblende + plagioclase + clinopyroxene + quartz in addition to garnet. The remainder, all of which contain quartz, include quartzose, quartzofeldspathic, and aluminous (kyanite±sillimanite-bearing) varieties. Most xenoliths have identifiable protoliths—mafic from intermediate or mafic igneous rocks, quartzose from quartz-rich sedimentary rocks, aluminous from Al-rich graywackes or pelites, and quartzofeldspathic from feldspathic sediments and/or intermediate to felsic igneous rocks. However, many have unusual chemical compositions characterized by high FeO(t), FeO(t)/MgO, Al2O3, and Al2O3/CaO, which correspond to high garnet abundance. The mineralogy and major-and trace-element compositions are consistent with the interpretation that the xenoliths are the garnet-rich residues of high-pressure crustal melting, from which granitic melt was extracted. High 87Sr/86Sr and low 143Nd/144Nd, together with highly discordant zircons from a single sample with Pb/Pb ages of ∼ 1.7 Ga, demonstrate that the crustal material represented by the xenoliths is at least as old as Early Proterozoic. This supracrustal-bearing lithologic assemblage may have been emplaced in the lower crust during either Proterozoic or Mesozoic orogenesis, but Sr and Nd model ages> 4 Ga require late Phanerozoic modification of parent/daughter ratios, presumably during the anatectic event. Pressures of equilibration indicate that peak metamorphism and melting occurred before the Mojave crust had thinned to its current thickness of <30 km. The compositions of the xenoliths suggest that the lower crust here is grossly similar to estimated world-wide lower-crustal compositions in terms of silica and mafic content; however, it is considerably more peraluminous, has a lower mg-number, and is distinctive in some trace element concentrations, reflecting its strong metasedimentary and restitic heritage.

Publication type Article
Publication Subtype Journal Article
Title Evidence from xenoliths for a dynamic lower crust, eastern Mojave Desert, California
Series title Journal of Petrology
DOI 10.1093/petrology/35.5.1377
Volume 35
Issue 5
Year Published 1994
Language English
Publisher Oxford University Press
Description 39 p.
First page 1377
Last page 1415
Google Analytic Metrics Metrics page
Additional publication details