Wildfire damages to private residences in the United States and elsewhere have increased as a result of expansion of the wildland-urban interface (WUI) and other factors. Understanding this unwelcome trend requires analytical frameworks that simulate how various interacting social, economic, and biophysical factors influence those damages. A methodological framework is developed for simulating expected residential property losses from wildfire [E(RLW)], which is a probabilistic monetary measure of wildfire risk to residential properties in the WUI. E(RLW) is simulated for Flathead County, Montana for five, 10-year subperiods covering the period 2010-2059, under various assumptions about future climate change, economic growth, land use policy, and forest management. Results show statistically significant increases in the spatial extent of WUI properties, the number of residential structures at risk from wildfire, and E(RLW) over the 50-year evaluation period for both the county and smaller subareas (i.e., neighborhoods and parcels). The E(RLW) simulation framework presented here advances the field of wildfire risk assessment by providing a finer-scale tool that incorporates a set of dynamic, interacting processes. The framework can be applied using other scenarios for climate change, economic growth, land use policy, and forest management, and in other areas.