Geophysical investigations of the geologic and hydrothermal framework of the Pilgrim Springs Geothermal Area, Alaska

By: , and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


Pilgrim Hot Springs, located on the Seward Peninsula in west-central Alaska, is characterized by hot springs, surrounding thawed regions, and elevated lake temperatures. The area is of interest because of its potential for providing renewable energy for Nome and nearby rural communities. We performed ground and airborne geophysical investigations of the Pilgrim Springs geothermal area to identify areas indicative of high heat flow and saline geothermal fluids, and to map key structures controlling hydrothermal fluid flow. Studies included ground gravity and magnetic measurements, as well as an airborne magnetic and frequency-domain electromagnetic (EM) survey. The structural and conceptual framework developed from this study provides critical information for future development of this resource and is relevant more generally to our understanding of geothermal systems in active extensional basins.

Potential field data reveal the Pilgrim area displays a complex geophysical fabric reflecting a network of intersecting fault and fracture sets ranging from inherited basement structures to Tertiary faults. Resistivity models derived from the airborne EM data reveal resistivity anomalies in the upper 100 m of the subsurface that suggest elevated temperatures and the presence of saline fluids. A northwest trending fabric across the northeastern portion of the survey area parallels structures to the east that may be related to accommodation between the two major mountain ranges south (Kigluaik) and east (Bendeleben) of Pilgrim Springs. The area from the springs southward to the range front, however, is characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with north-south extension that formed the basin. The area around the springs (~10 km2 ) is coincident with a circular magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. These features possibly result from hydrothermal alteration imposed by fluids migrating along intra-basin faults related to recent north-south extension.

The Pilgrim River valley is characterized by a NE-elongate gravity low that reveals a basin extending to depths of ~300 m beneath Pilgrim Springs and deepening to ~800 m to the southwest. The margins of the gravity low are sharply defined by northeasttrending gradients that probably reflect the edges of fault-bounded structural blocks. The southeastern edge of the low, which lies very close to the springs, also corresponds with prominent NE-striking anomalies seen in magnetic and resistivity models. Together, these features define a structure we refer to as the Northeast Fault. The location of the hot springs appears to be related to the intersection of the Northeast Fault with a N-oriented structure marked by the abrupt western edge of a resistivity low surrounding the hot springs. While the hot springs represent the primary outflow of geothermal fluids, additional outflow extends from the springs northeast along the Northeast fault to another thaw zone that we interpret to be a secondary region of concentrated upflow of geothermal fluids.

The Northeast Fault apparently controls shallow geothermal fluid flow, and may also provide an important pathway conveying deep fluids to the shallow subsurface. We suggest that geothermal fluids may derive from a reservoir residing beneath the sediment basin southwest of the springs. If so, the shape of the basin, which narrows and shallows towards the springs, may funnel fluids beneath the springs where they intersect the Northeast Fault allowing them to reach the surface.

An alternative pathway for reservoir fluids to reach intermediate to shallow depths may be afforded by the main Kigluaik range front fault that coincides with a resistivity anomaly possibly resulting from fluid flow and associated hydrothermal mineralization occurring within the fault zone.

Publication type Conference Paper
Publication Subtype Conference Paper
Title Geophysical investigations of the geologic and hydrothermal framework of the Pilgrim Springs Geothermal Area, Alaska
Year Published 2014
Language English
Publisher Stanford University
Contributing office(s) Geology, Minerals, Energy, and Geophysics Science Center
Description 9 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering
Conference Title Thirty-Ninth Workshop on Geothermal Reservoir Engineering
Conference Location Stanford, CA
Conference Date February 24-26, 2014
Google Analytic Metrics Metrics page
Additional publication details