Spectroscopy from Space

Reviews in Mineralogy and Geochemistry
By: , and 

Links

Abstract

This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together these systems are providing a wealth of data that will enable a better understanding of the composition of condensed matter bodies in the solar system.

Minerals, ices, liquids, and other materials have been detected and mapped on the Earth and all planets and/or their satellites where the surface can be observed from space, with the exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, displays the greatest material diversity including the detection of amorphous and crystalline inorganic materials, organic compounds, water and water ice.

Water ice is a very common mineral throughout the Solar System and has been unambiguously detected or inferred in every planet and/or their moon(s) where good spectroscopic data has been obtained.

In addition to water ice, other molecular solids have been observed in the solar system using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice on some objects. The largest deposits of carbon dioxide ice are found on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system.

Saturn’s moon Titan probably has the most complex active extra-terrestrial surface chemistry involving organic compounds. Some of the observed or inferred compounds include ices of benzene (C6H6), cyanoacetylene (HC3N), toluene (C7H8), cyanogen (C2N2), acetonitrile (CH3CN), water (H2O), carbon dioxide (CO2), and ammonia (NH3). Confirming compounds on Titan is hampered by its thick smoggy atmosphere, where in relative terms the atmospheric interferences that hamper surface characterization lie between that of Venus and Earth.

In this chapter we exclude discussion of the planets Jupiter, Saturn, Uranus, and Neptune because their thick atmospheres preclude observing the surface, even if surfaces exist. However, we do discuss spectroscopic observations on a number of the extra-terrestrial satellite bodies. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with possible exceptions on Charon and possible trace amounts on some of the Saturnian satellites. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces from spectroscopy. Only two asteroids have had a direct detection of surface water ice, although its presence can be inferred in others.

Publication type Article
Publication Subtype Journal Article
Title Spectroscopy from Space
Series title Reviews in Mineralogy and Geochemistry
DOI 10.2138/rmg.2014.78.10
Volume 78
Issue 1
Year Published 2014
Language English
Publisher Mineralogical Society of America
Contributing office(s) Crustal Geophysics and Geochemistry Science Center
Description 48 p.
First page 399
Last page 446
Google Analytic Metrics Metrics page
Additional publication details