Detecting change in water quality from implementation of limestone treatment systems in a coal-minded watershed

By:  and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


During 1996-97, a variety of limestone-based treatment systems were implemented to neutralize acidic mine drainage and reduce the transport of dissolved metals in the northern part of the Swatara Creek watershed, which drains a 43-mi2 (112-km2) area in the Southern Anthracite Field upstream from Ravine, Pa. Since 1996, the current project has monitored water quality upstream and downstream of each treatment and at integrator sites on lower reaches of Swatara Creek. Continuous measurements of pH and specific conductance and periodic sampling for alkalinity, acidity, sulfate, and metals upstream and downstream of each treatment system show that (1) open limestone channels and limestone-sand dosing generally had negligible effects on water quality and (2) limestone diversion wells and limestone drains generally were effective at producing near-neutral pH and attenuating dissolved metals during baseflow but were less effective during stormflow conditions. Storm runoff in this area commonly is acidic, and, as streamflow volume increases during stormflow conditions, a smaller fraction of total flow is treated and (or) residence time in the treatment system is reduced.

Monitoring on the mainstem of Swatara Creek indicates watershed-scale effects owing primarily to changes in mining practices and secondarily to watershed-wide implementation of treatment systems. Most underground mines in the Swatara Creek Basin were abandoned before 1960 and are presently flooded. Drainage from these mines contributes substantially to baseflow in Swatara Creek. For Swatara Creek at Ravine, Pa., which is immediately downstream of the mined area, long-term data collected since 1959 indicate sulfate concentration declined from about 150 mg/L in 1959 to 75 mg/L in 1999; pH increased sharply from 3.5-4.4 (median ~4) to 4.6-7.0 (median ~6) after 1975. These trends resulted from a decline in pyrite oxidation and the onset of carbonate buffering. Because these long-term attenuation processes have had such a pronounced effect on water quality in Swatara Creek, the effects of recent implementation of limestone treatments are difficult to detect at a watershed scale. Nevertheless, during ecological surveys prior to 1991, no fish were found in Swatara Creek at Ravine. Only six species of fish were found in 1994 and 1996. However, increasing numbers of fish have been found annually since 1996. In 1999, 21 species of fish were documented.

The recent monitoring on the mainstem of Swatara Creek indicates the limestone treatments mitigate extreme fluctuations in pH during storm events; however, additional buffering capacity is needed to maintain near-neutral pH of Swatara Creek during large storm events. Concentration 2 of sulfate, specific conductance, and pH are inversely related to streamflow at Ravine, indicating dilution and acidification during stormflow. Declines in stream-water pH to values approaching 5.0 could result in the remobilization of adsorbed or precipitated metals associated with sediments; declines in pH below 5.0 could cause injury to aquatic organisms. Generally, to maintain stream pH during storms, additional or larger limestone diversion wells could be constructed to begin or increase alkalinity production as the stream stage rises and/or additional or larger limestone drains could be constructed to produce greater amounts of alkalinity and enhance the buffering capacity of baseflow.

Study Area

Publication type Conference Paper
Publication Subtype Conference Paper
Title Detecting change in water quality from implementation of limestone treatment systems in a coal-minded watershed
Year Published 2000
Language English
Publisher US Environmental Protection Agency
Contributing office(s) Pennsylvania Water Science Center
Description 22 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Proceedings: 8th National Nonpoint Source Monitoring Workshop
First page 1
Last page 22
Conference Title 8th National Nonpoint Source Monitoring Workshop
Conference Location Hartford, Connecticut
Conference Date September 10-14, 2000
Country United States
State Pennsylvania
County Lebanon County, Schuylkill County
Other Geospatial Swatara Creek Basin
Google Analytic Metrics Metrics page
Additional publication details