Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

Journal of Geophysical Research B: Solid Earth
By: , and 

Links

Abstract

Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1002/2014JB010966
Volume 119
Issue 7
Year Published 2014
Language English
Publisher Americal Geophysical Union
Contributing office(s) Earthquake Science Center
Description 25 p.
First page 6023
Last page 6047
Country United States
State California
Google Analytic Metrics Metrics page
Additional publication details