Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines

By:  and 

Links

Abstract

Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent Bluestone River Watershed. Model simulations prior to use of the DRAIN package for simulating mine workings produced estimated flows of 0.32 to 0.34 m3/s in each of the similar sized Elkhorn Creek and North Fork Watersheds, but failed to estimate inter-basin transfer of groundwater from the adjacent Bluestone River Watershed. The simulation of mine entries and discharge using the MODFLOW DRAIN package produced estimated flows of 0.46 and 0.26 m3/s for the Elkhorn Creek and North Fork watersheds respectively, which matched well measured flows for the respective watersheds of 0.47 and 0.26 m3/s.

Study Area

Publication type Conference Paper
Publication Subtype Conference Paper
Title Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines
DOI 10.21000/JASMR12010304
Year Published 2017
Language English
Publisher ASMR
Contributing office(s) West Virginia Water Science Center
Description 17 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Proceedings America Society of Mining and Reclamation
First page 304
Last page 320
Conference Title Sustainable Reclamation: 2012 National Meeting of the American Society of Mining and Reclamation
Conference Location Tupelo, MS
Conference Date June 8-15, 2012
Country United States
State West Virginia
County McDowell County
Other Geospatial Elkhorn Creek, North Fork
Google Analytic Metrics Metrics page
Additional publication details